
-Ai84 025 TERM 10- AN ADA (TRADE NAME) TERMINAL INTERFACE PACKAGE 1/1

I 'GU) NAVAL POSTGRADUATE SCHOOL MONTEREY CA A J KEOUGH

UNCLASSIFIED F/G 12/5 ML

EEEEEEEE mhhhEIEEEEEIIEIIIE
EllI~lEEElhIIE
Elll~lEEEllllI
IEEE..llll

1111- ____ 11111221

11111.25 iii! 1 14 i.0

MICROCOPY RESOLUTION TEST CHART
NATIOlNAL BUREAU OF STANDARDS- 193-A

qV- :'-W' W

I1CFILE Copy V., 1
NAVAL POSTGRADUATE SCHOOL

N Monterey, California
0 DTIC
I- d ELECTE

SEP 021987

THESIS
TERM 1O:

AN ADA® TERMINAL INTERFACE PACKAGE

by

Anthony James Keough

June 1987

Thesis Advisor: Daniel L. Davis

Anroved for public release; distribution is unlimited!
Ada i. a registered trademark of the U.S. Government (AJTM)

87 8 28 179
i ., , L . o . ,. - "

UNCLASSIFIED
SE CUR ITY CLPIICATION OF TWIS PAGE

REPORT DOCUMENTATION PAGE
ia REPORT SECURITY CLASSIFICATION lb RESTRICTIVE MARKINGS

Unclassi fied______________ ______

2a SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION'/AVIAILABILITY OF REPORT

2b DECLASSFiCATiON /DOWNGRADING SCHEDULE Approved fa-r ntlcree:e
Distribut ion is hii ie

4 PERFORMING ORGANIATION REPORT NUMBER(S) S MONITORING ORGANIZATION REPORT NUMBER(S)

6a NAME OF PERFORMING ORGANIZATION 6t) OFFiCE SYMBOL ?a NAME OF MONITORING ORGANIZATION

..aval Postgraduate Schoo ~o 52~ Naval Postg7raduate --c.~

6C ADDRESS City. Stare. and ZIP Code) 7b ADDRESS (City, State, "n ZIP Code)

.:nterey, California 93943-5000 Monterey, California ~935O

Ba NAME OF FUNDINGiSPONSORING T8b OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENrFICATiON NUMBER
ORGANIZATION (i applicable)

Sc AL)DRESS (City. State. and ZIP Code) 10 SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK jNiT
ELEMENT NO INO NO ACCESS:ON NO

6(in~clude Security Classification) -A K G uE- ,". ~0 A4 ADA TERMINAL INTERFACEPAKG (u

2 ~~SNA A~iORS) Keough, Anthony James

3. ** I:) REPORT 11b7ME COVERED 114 DATE OF REPORT (Year, Month, Day) 115 PAGE (0,,NT

:T1aster tIs Thesis FOM To 1987 June I73
6SL. -. E MEN TARY NOTATION

*COSAr; CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

-.,D GRU SUB-GROUP Terminal Interface; ANSI Standard Terminal;b GROUPScreen Control Functions; Ada

9ABS'RACT (Continue on reverse if necessary "n identify by block number)

Dre difficulty in the use of the Ada langua 'Fe in interactive program-
rir c iL t--e inability to specify serial CRT terminal screen functions when
w'ruts-n- the user interface. This thesis presents a solution in the form

an. Ada pac kage for terminal 10 that provides the programmer with Ada i

'an71:i-ue function calls that perform many of the serial CRT screen control
~nstsn5automatically available in other lanruag-es. A soecificatio-n of

riercka:-e TERM TO is oresented. An implementation of th~e racka -e for
t~~-1O terminal and an example of the use of TERM TO are rre--nt.A

-3S' 3 J' ON, AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CL.ASSIFICATION

EY.CASIE0,ijNL MITED 0 SAME AS RPT OCDTIC ,SERS U.nclIas-si f ie d
-'a '.AM.E OF RESPONSIBLE NOIVIDUAL 2TLE.Oo(nclude Area Code) 22,, O;F(6SMO

DO FORM 1473,.84 M6AR 8] APR edit-on f"ay be used writIetwhausted SECURITY CLASSIFICATION OF '-5 PASE
All other editions are obsolete UOL SIT 7T

1P

Approved for public release; distribution is unlimited.

TERM 10:
An Ada Terminal Interface Package

by

Anthony James Keough
Lieutenant, United States Navy

B.S.M.E., University of Wisconsin, 1981

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL

June 1987

Author: '1,

Antlnyl. Keough

Approved by: - &- va
Daniel L. Davis, Thesis Advisor

Michael J. yaSck er

Vincent Y. m, Chairman,

Department f Computer Science

Kneale T. Marshall,
Dean of Information and Policy Sciences

2

ABSTRACT

One difficulty in the use of the Ada language in interactive programming is

the inability to specify serial CRT terminal screen functions when writing the user

interface. This thesis presents a solution in the form of an Ada package for

terminal 10 that provides the programmer with Ada language function calls that

perform many of the serial CRT screen control functions automatically available

in other languages. A specification of the package TERMIO is presented. An

implementation of the package for the VT-100 terminal and an example of the

use of TERM 10 are presented. -

4K
Acce:ioi For

NTIS CRA&I
UFIC TA 0
U:) aT ino-, red
J LJ. i IC

By

A I I2 xi

3

TABLE OF CONTENTS

I. INTRODUCTION ... 7

A. BACKGROUND .. 7

1. User Interface M odules .. 8

2. Lack of Portability ... 8

B. ORGANIZATION ... 9

II. THE USER INTERFACE ... 11

A. INTRODUCTION ... 11

B. TYPES OF TERM INALS ... 11

1. Teletype Terminal ... 11

2. Serial CRT .. 12

3. Character M emory M apped CRT 13

4. Bit M emory M apped CRT ... 13

C. TYPES OF INTERFACES ... 14

1. Hierarchical Interface ... 14

2. Event Driven Interface ... 14

III. THE ADA USER INTERFACE .. 16

IV. SURVEY OF EXISTING SYSTEM S .. 19

A. THE ADA LANGUAGE ... 19

4

B. OTHER LANGUAGE SYSTEMS................................ 20

C. TERMINAL DOCUMENTATION............................... 21

V. DESIGN ISSUES.. 23

A. OPTIONS .. 23

B. THE DESIGN.. 25

1. Cursor Control... 26

2. Screen and Line Clearing 27

3. Keyboard Polling.. 27

4. Reverse Video and Boldface 28

5. Graphics ... 28

VI. IMPLEMENTATION .. 30

A. THE TERM_10 PACKAGE...................................... 30

1. Control Codes ... 30

2. Keyboard Input ... 31

B. TERMINALS .. 33

1. The ANSI Terminal Interface 33

2. The VT-52 Interface.. 34

3. Other Terminal Types ... 35

VII. CONCLUSIONS .. 36

A. REVIEW .. 36

5

B. RECOM M ENDATIONS ... 37

APPENDIX A TERM I10 PACKAGE DECLARATION 39

APPENDIX B A PROGRAMMER'S GUIDE TO THE
TERM_10 PACKAGE ... 43

APPENDIX C TERM IO PACKAGE BODY 51

APPENDIX D ANSI STANDARD AND VT-52 TERMINAL
CONTROL CODE SEQUENCES 63

APPENDIX E MODIFICATIONS TO THE ADAMEASURE
USER INTERFACE ... 64

LIST O F R EFER ENCES ... 70

INITIAL DISTRIBUTION LIST .. 71

6

S -. I

I. INTRODUCTION

A. BACKGROUND

The ability to understand and use a computer software product depends

heavily on the quality of the user interface. The user interface is the vehicle of

conversation between the programmer and the user. The programmer wants to

provide a clear, easy to use interface so that his work is favorably evaluated and

used. The user wants an interface that he can understand and use easily.

Programmers employ a variety of techniques in the design of the user interface.

The techniques used depend greatly on the type of hardware on which the the

program runs and the capability of the language used by the programmer. Many

languages provide a wide variety of functions that control the terminal interaction

process while other languages are sparsely equipped. Often the amount of effort

that is required of the programmer determines the quality of the user interface

that he produces.

Thesis students at the Naval Postgraduate School (NPS), who are sponsored

by the Naval Weapons Center. China Lake (NWC) and who are programming in

Ada have experienced difficulties in controlling the output to a serial CRT

terminal screen in the Ada language. These problems are manifested in the areas

of cumbersome user interface modules and non-portable interface modules. These

7

LU -1aZ

problem areas at first seem to be separate but both are symptoms of the lack of

terminal interface capability in the Ada language.

1. User Interface Modules

The user interface of the Ada programs being developed today at the

Naval Postgraduate School are cumbersome. hard to use, and do not fully utilize

the capabilities of the user's terminal. Programs such as AdaMeasure [Ref. 1]

were written using the standard Ada packages text io and serial io which were

designed to be used on teletype terminals. The program is usually run from a

VT-100 terminal with much more capability. The user is not able to use the

capabilities of his equipment to operate the program as easily.

2. Lack of Portability

Programmers who try to use the capability of the terminal to improve

.* their program's interface often sacrifice portability. The AdaMeasure program

discussed above uses a single VT-100 control sequence to clear the terminal

screen, making the program non-portable. A programmer wishing to adapt the

program to a different terminal type is required to research the method of clearing

the screen and adapt the control sequence in the program.

This thesis examines some of the problems of writing a good interface in

Ada and proposes a solution by providing a package of interface procedures. The

* programmer can use this package to better exploit the capabilities of the serial

(RT terminal and enhance the quality of the user interface that he designs.

8
-4

F"

B. ORGANIZATION

Chapter Two describes the styles of user interfaces that are used today. The

effect of the hardware capabilities on the choice of the user interface style is

discussed.

Chapter Three discusses the design of the Ada language and the reasons for

the lack of user interface procedures. The experiences of students programming in

Ada and the need for a more sophisticated interface package is presented.

Chapter Four discusses the capabilities available in the common terminal

types and how other popular languages have used the capabilities of the serial

CRT terminal. An examination of these features helps to determine what

procedures might be useful in an Ada interface package.

Chapter Five discusses the issues considered in the design of an improved

interface package. The design of the TERM IO interface package is presented

and its capabilities discussed.

Chapter Six discusses the implementation of the user interface package body.

An application of the package of interface procedures is demonstrated using a

sample menu producing procedure.

Chapter Seven presents a summary of the work discussed and

recommendations for the use of the TERM I10 package and for future work in

this area.

Appendix A lists the complete specification of the package TERM 10.

Appendix B contains a programmers guide to the use of the TERM 10 package.

9

Appendix C lists the package body of the TERMIO package for the VT - 100

terminal. Appendix D presents a summary of serial CRT control codes for several

terminal types. Appendix E gives examples of the use of the TERM_10 package

to improve the interface of an existing Ada program, the AdaMeasure program

written by thesis students at the Naval Postgraduate School.

'1N

[,.

4,

~10

II. THE USER INTERFACE

A A. INTRODUCTION

The purpose of the user interface is to bridge the conceptual gap between the

user's understanding of the computing process and the program in execution. The

user is not concerned with the hardware implementation details, only with the

functional process of the program that is running.

The capability and functions of the user interface vary greatly from program

to program. Some variation in capability is due to the decisions of the software

designers. Many differences, however, are due to the constraints imposed by the

capabilities of the supporting terminal.

B. TYPES OF TERMINALS

Terminal hardware configurations are different for every system. The

capabilities of the terminal depend on the level of sophistication of its hardware.

These capabilities vary from the basics of a teletype printer to the latest design of

graphics terminal. The common terminal types in use today are the teletype.

serial CRT. character mapped CRT. and the bit mapped CRT.

1. Teletype Terminal

The teletype terminal is the first widely used terminal. Many are still in

use today. In this terminal the computer output is sent one character at a time in

1%
,:1
, *-q~p- ~~ ~. C4%

serial fashion from the computer to be printed on the paper of a printer which sits

behind a keyboard. The input is taken from the keyboard and is usually echoed

on the paper. The user may address the memory by line only. The teletype has

the least capability of any terminal type.

2. Serial CRT

The serial CRT terminal is an improved version of the teletype terminal.

The paper and printer have been replaced in this system by a CRT screen that

displays the output printed by the computer. This terminal has several

advantages over the teletype including speed and paper saving. The only

capability that the serial CRT terminal adds is that it is cursor addressable. The

computer can position the cursor to any position on the CRT screen to print the

next character. This feature can be used to format the screen output and produce

simple shapes and graphs. The serial CRT is probably the most common

terminal in use today. The input device has not changed from the teletype. it is

still the keyboard input.

The terminal controls what is displayed on the CRT screen by storing the

screen contents in an array corresponding to the screen locations on the screen. A

-* common size for this array is 24 rows by 80 columns. Each location holds

information that indicates the character to be displayed at its screen position.

Also stored is information such as highlighting and character and background

shade. Input to the terminal is received just as in the teletype terminal. The

stream of serial output from the computer is written to the screen buffer. The

12

-0

video processor reads the screen buffer and uses a character generator to produce

the cbaracters on the screen. The video processor typically does this 30 times each

second. In the serial CRT the screen buffer is not accessable to the program.

3. Character Memory Mapped CRT

In the character memory mapped CRT terminal, the method of storing

the information to be displayed on the screen has changed to provide access to the

character stored at each screen location. The output is the same as for the serial

CRT. The contents of the memory storage locations in the screen buffer can be

read and used by the program. The video processor works the same as for the

serial CRT.

4. Bit Memory Mapped CRT

In the bit memory mapped CRT terminal the screen buffer has been

expanded to use a memory location for each pixel location on the screen. A

typical screen size 1024 by 768 pixels. This terminal is pixel addressable. This

allows the drawing of more complex graphics than is possible with character based

systems. In this terminal, the video processor reads the memory location

corresponding to each pixel to determine the shade. The character generator is no

-longer used in the screen refresh cycle. Pointing devices such as a mouse or track

ball are now included as input devices as well.

,

13

C. TYPES OF INTERFACES

General purpose interfaces today are divided into two main categories.

hierarchical interfaces and event driven interfaces.

1. Hierarchical Interface

The hierarchica: interface is commonly used with the teletype, serial CRT

and character mapped CRT terminals. Systems designed using the hierarchical

interface are usually menu driven. Using this type of system. the user makes a

selection from each of a series of menus until reaching a functional level where a

process is performed. After the process is completed, control of the program is be

returned to the top or *main' menu or to the last menu reached before the process

execution began.

The hierarchy of the menu selections reflects the structure of the

program. At each menu level, the user restricts his view of the program to the

options left under that selection. If, after a process is performed, the user desires

to run another process, the user must retrace the menu tree to reach the menu

selection for the new process. A user can experience problems in working through

several menu levels and remembering what options are available from any of the

menu levels.

2. Event Driven Interface

Event driven systems usually use the bit mapped CRT terminal with a

pointiin (evice. The user can access most of the program functions directly from

the terminal screen.

14

Functions are selected with the pointing device from menus that are

always visible to the user. From almost every function, the user returns to the

main screen. The prompt for the available functions is visible at all times so the

user has less difficulty remembering what functions are available and how to

access them.

This thesis concentrates on the user interface requirements of the

hierarchical interfaces using serial CRT terminals. The systems currently

available at NPS and NWC for Ada programming are all serial CRT devices.

Almost all of them are VT-100's or VT-100 emulators.

15

1.
A1

-,'V \:

III. THE ADA USER INTERFACE

The Ada language is designed for use in embedded systems software.

Interfaces for embedded systems tend to be specialized and hardware specific.

Little effort has been made to develop an interface for output devices other than

the serial (embedded) device and the teletype terminal. As a result, programmers

who want to write in Ada cannot use terminal interaction and screen formating

available on the serial CRT terminal without writing their own interface

procedures.

Most of the current Ada literature concerns the design of software engineering

environments for the language. Many of these systems are being designed and

written but none has specifically addressed the problem of using terminals with

more capability than the original teletype. It is assumed that each application will

write its own interface.

The Preliminary System Specification of the Software Technology for

Adaptable Reliable Systems - Software Engineering Environmets (STARS-SEE)

program specifies that a standard user interface at the end product level will be

used. The Interface Control Working Group (ICWG) is responsible for the

oversight and control of system and software interfaces[Ref. 2]. The preliminary

tr)•tcifration does not address the variations of terminal types but only says that

P" the interface is to be consistent.

16

The shortcomings of the TEXT IO package were the subject of a paper by

J.P. Rosen presented at the 1984 IEEE Ada Applications and Environments

Conference [Ref. 3]. This paper describes typical programming problems with

TEXT IO. many of which are the same problems experienced by programmers at

NPS. Rosen offers several programming techniques to better use the facilities in

TEXT IO. Rosen takes the position that a special 10 package is not necessary to

write a good terminal interface in Ada. He does not address the problems of using

screen graphics or different terminal configurations.

While it is likely that any large commercial application written in Ada would

include its own terminal 10 package, the use of Ada in the academic and research

environments would be enhanced by the availablility of a simple, easy to use.

portable interface package that supported the serial CRT terminal.

Students at the Naval Postgraduate School are currently using Ada for

general purpose projects other than embedded systems. Many of these projects use

terminal interface and interactive procedures. These students and other

programmers who want to use Ada for programs with terminal interface

procedures face several difficult problems. Methods of performing many common

screen functions such as clearing the screen or positioning the cursor are not

entirely standardized. Students who want to improve the usability and

appearance of their work have been forced to include terminal specific character

codes and functions in their programs. The result is that each student is spending

17

time researching the correct character codes and is producing programs that are

not portable.

The solution for these programmers is the availability of a package of

terminal interface procedures that a programmer can use for terminal interaction.

The objective of the terminal interface package is to provide the Ada programmer

with the enhanced terminal interface functions required to exploit the capabilities

of the serial CRT terminal. The programmer can use these functions without

having to rewrite them for each program. The result will be more efficient.

standardized programs.

The system should provide an interface between the program and the

terminal device so that the programmer can specify the terminal functions by

using standard procedure calls in his programs in the same way that text io and

serial io procedures are called. The call will remain the same. but the

implementation will depend on the terminal type.

18

IV. SURVEY OF EXISTING SYSTEMS

The Ada language. other language interfaces, and terminal manuals were

studied to determine how user communications in the Ada language could be

improved. Several existing commercial software language packages have features

that fully utilize the capabilities of the serial CRT. These languages are

implemented for the particular language on a particular mainframe or

microcomputer. They indicate what features have been successfully implemented

and what capabilities an Ada programmer is likely to utilize. Programmer's

guides for the different terminal types indicate what functions can be

implemented for each terminal type and the method to be used. By comparing

the functions available on the terminals, the functions provided in other systems.

and the experience of Ada programmers. a common set of useful functions that a

programmer is likely to use can be chosen.

A. THE ADA LANGUAGE

Ada is designed to allow users to tailor the language to their needs by writing

packages that can be used in many programs. The designers of the language

purposely left out many of the terminal interface functions to maintain the overall

generality of the language[Ref. 4.p.252]. Implementation of these functions lia,

been left up to the user.

% 19

.4.

'*/ht

The standard text io Ada package allows the programmer some, but not

much, control of the screen output. Some of the procedures specified include: line

and col that return the line or the column of the present cursor position, set-line

and set col that change the cursor position, and a new page function that

advances the page[Ref. 5]. These procedures are designed to control the output of

the teletype terminal and do not provide the level of access to the operating

system functions that is required to control the output to a serial CRT terminal.

In order to produce the terminal screen output, the programmer must specify the

character to be printed at each screen location. In such a case, the CRT terminal

screen is no more useful than the teletype printer paper it replaced.

B. OTHER LANGUAGE SYSTEMS

Languages that are designed to run on a particular system can provide a

fairly extensive set of terminal control functions because the hardware

configuration is known and portability is not an issue. This is particularly true of

systems that run on microcomputers.

One such microcomputer language is Turbo Pascal. Turbo Pascal provides a

set of Pascal procedures that the programmer can use to control the screen

output. These procedures allow the programmer to clear a line of text. clear the

screen, position the cursor, and adjust screen brightness. Turbo Pascal uses the

ANSI ecape codes and operating system calls of the host machine to accomplish

these functions. Ref. 6.

201

4*

C. TERMINAL DOCUMENTATION

Documentation such as the VT-100 User Guide is available for most terminal

types. This documentation provides the user with information about the

terminal's capabilities and functions. The VT-100 User Guide summarizes the

protocol of over fifty terminal features [Ref. 7,p.43]. Norton's programmer's guide

to the IBM PC is an excellent source of information for users -f IBM and MS-

DOS microcomputers [Ref. 8]. The challenge to the programmer is to incorporate

the terminal functions into the language that he is writing in. in this case Ada.

The difficulty to the programmer is the need to devote significant time and effort

to the ancillary problem of the user interface.

An examination of the code written by programmers for their interfaces

illustrated the problems experienced by those programmers and what they would

likely do if provided with a set of user interface procedures. Neider and Fairbanks

have written their interface on the level of the teletype terminal without making

use of the capabilities of the terminal [Ref. 1]. This is a 'lowest common

denominator' approach. This method is hard on the user who may be used to

working on other more advanced or friendly systems. such as Unix. Other

programmers have spent hours trying to reproduce a function that they know is

possible to do in another language. An excellent example of this is a keyboard

tpolling function, that is a function in Turbo Pascal [Ref. 6.p.143]. and in the "("

language is the "getchar' function. A keyboard polling function is not provided in

Adla.

21
...

,t'

N,..

A common method of screen control seen in serial CRT terminals is the use of

special character codes such as the ANSI code [Ref. 7]. The put function in

text io package is capable of writing these control codes to the terminal screen.

By using the standard functions in the text io package and the ANSI codes for

the host machine, a useful set of terminal user interface procedures can be

implemented.

-"V

22

V. DESIGN ISSUES

A. OPTIONS

By looking at the existing software and discussing the needs with

programmers. the need for a basic set of terminal interface procedures has been

established. The next step is to design an implementation of these features that is

useful to the programmer and allows the programmer to write terminal interface

functions easily.

Three alternatives were considered for the implementation of the terminal

interface package. The low end alternative is to distribute a table of terminal

functions and control codes to programmers to include in their programs. This

method has several disadvantages. It requires strictly enforced programming

standards to prevent giving the programmers too much discretion over how to use

the control codes in their programs, promoting the non-portablity of code. It

would defeat the organization's goal of portability and maintainability and send

the 'wrong signals' to the programmers.

The middle alternative is to develop an Ada package that implements a set of

t. functions that are common to many terminal types and restrict the programmers

to using the package to perform terminal interaction. This will allow the code

that is produced to be portable to any terminal type that is supported by a

version of the terminal interface package. This method achieves the most

23
._S,,,"

"-4.

portability and standardization but it does not fully utilize the capabilities of each

terminal type.

The high end alternative is to write a separate package for each terminal type

that provides a full implementation of the capabilities of that terminal. This

allows the best utilization of the terminal capabilities, but it has many of the

same disadvantages as the low end option. Code will not be as portable. There

will be no standardization, and more problems in maintenance of a larger set of

programs.

Since many of the processes to be implemented are accomplished through the

use of character sequences that vary from terminal type to terminal type, an Ada

package can be used to declare the constants for a terminal type. The same set of

procedures can be used, but with a different set of constants for each terminal

type supported. This approach allows a package to be designed for any function

that is performed by writing a special character sequence to the screen.

The choice of terminal types for implementation of the TERM IO package

was based largely on the types of terminals at the Naval Postgraduate School and

the Naval Weapons Center, China Lake. The most common terminal is the VT -

100 terminal. The VT-100. an ANSI standard terminal, is the terminal used for

current Ada projects. Most serial CRT terminals in use today can emulate the

ANSI standard terminal to some degree.

The TERM 10 Package provides much more screen support than k(,yboard
..

"itpport. Keyboard functions are much more hardware oriented than the cre(ri

24

I.%

functions and are less likely to be portable. The interface between the program

and the screen functions is well defined by the use of character strings as terminal

commands while the interface between the program and the keyboard function is

not as well defined. The terminal screen usually accepts information in a

character format but the keyboard can send information in character. integer, or

other data format. The program must allow for different data types if keyboard

polling is implemented extensively.

The terminal assumed for the TERM 10 package provides a terminal CRT

-cr,,nI of S0 colunn by 24 rows. support for the basic ASCII character set, and a

.ratphic- character ;et extension that allows the graphics characters to be declared

ia- character constants in Ada. Terminal control codes are available to perform the

-'i:.cTion, of cursor movement, screen and line clearing, reverse video and bold

;acf- pritirgII_, and graphics character printing. Other terminal features such as

1-,ir controlled cursor keys, numeric keypads, and special function keys are not

1i'('d in the TERM 10 package.

B. THE DESIGN

The package TERMIO includes screen handling procedures that are not

available in any of the standard Ada packages. These procedures allow the

pro(grammer to perform screen control functions in the Ada language. The

'. package t)pecificatioii has been designed to be portable among many terminal

tvpes. provided that the package body has been modified for the terminal type in

25

.-.--..- - - - . - . -., .'. . ' - .-. '-. "...... -.. --.4., :.2,,,t -. ,2-:.'g i .-'7:, .; ,i.N'/ ; :'"--- ' _'- - -" , :,,_''', :\ .'" , ; .: - : : .>:-. ...'.. * :" *44: "

use. The complete specification of the package TERM 10 is listed in Appendix A.

Portions of the package declaration are reproduced and described below.

Appendix B provides a programmer's guide with more discussion and examples of

the use of the TERM_10 package.

with TEXT 10;
use TEXT 10:
package TERM IO is

type SWITCHTYPE is (ON,OFF);

SWITCH: SWITCHTYPE;

The package TER I1 uses the input and output procedures contained in

the standard Ada package TEXT 10. TEXT 10 should always be available in

the Ada programming environment. The type SWITCHTYPE is an enumerated

type of (ON.OFF). The variable SWITCH is a status variable used by of the text

printed on the screen.

1. Cursor Control

The cursor control procedures can be used to position the cursor

anywhere on the terminal screen. These are:

procedure MOVE CURSOR HOME:
procedure MOVE CURSOR UP(NUM • in integer):
procedure MOVE CURSOR DN(NUM • in integer):

procedure MOVE CURSOR RT(NUM : in integer):
procedure MOVE CURSOR LT(NUM • in integer):
procedure SET CURSOR POS(COLM.ROW in integer):
procedure GET CURSOR POS(COLMROW • out positive count):

26

In a program, a procedure call of MOVECURSORLT(3): moves the cursor

three spaces to the left on the terminal screen.

2. Screen and Line Clearing

Procedures to clear the screen and to clear individual lines have been

included. These procedures are called without parameters. These are:

procedure CLEAR SCREEN:
procedure CLEAR LINE;
procedure CLEARCURSORTOEOL:

Procedure CLEAR LINE clears the line the cursor is on. Procedure

CLEAR CURSORTOEOL clears the portion of the line to the right of the

cursor. Procedure CLEAR SCREEN clears the screen but does not change the

cursor position.
4.

3. Keyboard Polling

Keyboard polling functions are used to get a single character from the

keyboard, usually as a response from the user. These functions are called without

parameters. They are:

function GET KEY return character;
function KEYPRESSED return boolean:

The function GET KEY can be used to get a response such as a menu selection.

The function KEYPRESSED can be used to have the user signal readiness to

continue.

27
'II

4. Reverse Video and Boldface

Reverse video and boldface printing can be obtained using these

procedures. All are called without parameters. They are:

procedure SET REVERSE(SWITCH: in SWITCHTYPE);
procedure GET REVERSE STATUS(SWITCH: in SWITCHTYPE),
procedure SET BOLD(SWITCH: in SWITCHTYPE);
procedure GET _BOLD STATUS(SWITCH : in SWITCHTYPE);

The variable type SWITCHTYPE is an enumerated type of (ON.OFF). A

procedure call of SET _REVERSE(ON): causes all printable characters printed on

the terminal screen to appear in reverse video until a procedure call of

SET REVERSE(OFF): returns the output to to the normal mode. Bold face

print works the same way.

5. Graphics

Simple graphics characters can be used to make a display better looking

and more understandable. Primitive characters have been provided as well as

several procedures. These procedures are:

procedure PUT TOP LT CORNER:
procedure PUT TOP RT CORNER:
procedure PUT BOT LT CORNER:

procedure PUT BOT RT CORNER:
procedure PUT HORZBAR:
procedure PUT VERT BAR:
procedure PUT CROSS:
procedure PUT TOP TEE:
procedure PUT BOT TEE:
procedure PIFT LT TEE:
procedure PTIT RT TEE:
procedure DRAW BOX(COL.M.ROW in integer):
procedure DRAW HORZ LINE(LENMTH • in integer):
procedure DRAW VERT LINE(LEN(TH • in integer):

28

-via

-. %. -

Procedure DRAW-BOX draws a box centered on the terminal screen with the

upper left corner at position (('OLM.RO\\'). The graphics character procedures

PUT TOP LTCORNER through PUT RT TEE print a single graphics

character to the screen and leave the cursor on the position of the character just

printed. DRAW HORZ LINE and DRAW VERT LINE draw a line from the

current cursor postition of of the length specified. A horizontal line is drawn from

the cursor position to the right. A vertical line is drawn from the cursor position

up the screen.

29

I

i ~ V ~ _ _ _ ". ~ a ~ 5 ~ ~ ' ~

"a- J

VI. IMPLEMENTATION

The package body of TERM 10 implements the portable TERM 10 package

specification. The goal in writing the package body was to produce a package

body for one terminal type that could be easily modified for other terminals.

Terminal specific items were declared as constants or separate procedures that

could be easily modified. The complete package body for TERM 10

iflI)lemnlnted for the VT - 100 terminal is contained in Appendix C.

A. THE TERM 10 PACKAGE

The major part of the TERM 10 package body is portable. The few)art,

that are not deal with specific hardware of the terminal. These are the control

codes and the method of keyboard input modes available in the terminal.

1. C'ontrol -Co)des

Control ("odes are character sequences that are interpreted by the

terminal as commands. These codes are used to perform terminal functions such

as clearing the screen and moving the cursor. Control codes vary from terminal

to terminal and are not compatible. There is an ANSI standard for terminal

cotrol codes, however, which many terminals are capable of emulating. Th1,u

¢ortro. co, for two common terminals, the ANSI standard and the VT - 52

ter:,inal. are contaired in Appendix D

30
_%•

"-- '3 1

U. .°*

Portability is achieved by restricting the programmer from direct access

to these control codes. Instead. the codes are used by the procedures available to

the programmer through the package declaration. The control codes for the

terminal are declared at the head of the package body. These codes are declared

as string constants. The string constant can be referenced by name to avoid

problems with embedded constants. The constants were used in these procedures

instead of the actual code strings to enhance the portability of the package body.

2. Keyboard Input

When writing interactive programs. it is often required that the user

'elect a menu choice or 'press any key to continue' reading an information screen.

These user interactions are usually done with a 'kevpress routine that detects

when a key has been pressed on the keyboard. In Turbo Pascal, this function i,

called KevPreset'Ref. 6. p. 1 4 3 *. This feature allows a user to move quickly

throughi a hierarchy of menus with as few keystrokes as possible. Unfortunately,

there , rio keypre.ss routine in the Ada language.

The keyboard input functions in the standard TEXT I0 package are the

get" functions. These function, are used to get character. tring. and i er

*-.. input from the user. These inputs are required by the Ada language to end in a

terminator character, an end of line. or end o'f fiht. The Ala get pr W.tI Aire-

nr t ('rI)ret the carriage return a, the end of line or fih'. Thij inans that with the

-tam(iar(i Iget procedires tle iier iust hit a carriag, return after each i:,

Ic('1ction. y ilic' nmost other m(n i ystelni- (10o not re,(uir, thievv ca riage rTnr -.

31

,- ",

? -.

the carriage return action becomes annoying to the user. This is important

enough to attempt an implementation of a keypres.s function for the TERM 10

package.

The method of getting input from the keyboard is different for each

implementation. Various methods of system dependent keyboard polling can be

developed. The poller could be a system call or an interupt. It could be a

pragnia. a compiler interface command, to a language such as 'C' that already ha"

a polling function. In the package TERM 10. the function KEYPOLLER is not

fully implemented. Instead. it has been stubbed with a a simple Ada *get*

)rocedture. The package can be used in this form or the 'get' procedure can be

replaced with a hardware specific keyboard polling routine. Each sv'tem can

install their own keyboard poller routine if it is desired. If the KEYPOLLER

fuictioi i- ued wIith the get procedure. carriage return.,, are required.

The inethod of keyboard polling ha. been hidden in the private procedure

KEYPOLLER. The programmer cannot use keypoller directly. It is called from

. the function- (;ET KEY and KEYPRESSED.

The procedure (;ET ('I'RSOR P0S is designed to read the cursor

po ,1-ion maintained hv the termliinal and return the row and colunn to the

pr ,ra n. Thi- fIiiiti(ion a, rot iImplemented due to pro)lems involved in

ira r-IlaJ g t he row arid column in foirmation that is provided by the terminal into

;ll A(a variav. This proce(ur (- an only be inl)leien ted by a hardware specific

,'ill To T I. Trrl inai.

~32

e-Q4)

B. TERMINALS

While the package declaration of the package TERM I() is portable. the

impleentation of the package body is specific for each terminal type :upported.

The -pecifics of the implementation are hidden from the programmer li the

package body. The programmer iv aware of only the declaration, or calling

-Tatenment for the proce1nre.. conatained in the package body. An iniplementation

has beenl written for the Digital Equiptnient (orporation VT -1(X) terminal This

type has been chosen because it is the most commlon and almost all corimercial

te'rriinak. are capable of' emillating it .. lodifying the parkage to uie oin another

Terminail Type can he done with changes to The package b odv Th, ,',,iplt.t

package bo),v for TERM I() implernented for the VT -100 terIinal .c(oriTaired

in Appendix

I The AN I Terminal hInterf'ace

The' VT - 1) terniinal U.,e- the control ,equences established by the

American National tandards Instit ute for controlling serial terminal -.creern

output. These sequencv- all begin with tle "(,,capv' character. 033H. and tliu are

known as 'escape codes.' The escape character can he written in Ada a!,

"A4,('II.ES('. A Slinima of the escape codes for the ANSI teriiinal arc

rcllrtailiell in appeidlix D. An NIS - DOS microcomiiputer can -e te(, AN ,(,,h,

%ith I ,h device driver AN I. ,Y " configuration.

To use the escape code sequeices in Ada the code, must be dc 'lared, a-

-rini coiistan ts. Thee ,triii, Constalits can I e naniipulatedl a> any (t h'er Trillg,

33

%%

1

! .* . -

are in Ada. including writing them out with a put procedure from the TEXT 10

package. When the terminal receive- the output string, it interprets it as a screen

comtmand which is executed. The ,,tring is not printed on the screen. An example

of such a ,tring declaration i

UP('RSR constant string := (AS(II.E (.'.'1'.'A' :

Thi., -tring causes the cursor to be moved up one line. The complete list of ,tring

declaration- for the package body of TERM 10 is contained in Appendix (

2. The VT-52 Interface

Another c('iiion terminal type V the Digital Equipment (Corporation VT

.52 terminal. The VT-52 terminal also uses control s equences to control the

screen. These sequences are in a different format and are not compatable with tI(

ANSI e(queices. These sequences(can be written in Ada as string constants just

da, the ANSI sequences can be. The package body for the VT-52 interface would

be the sane a- the package body for the ANSI interface except for the different

declaration of the string constants. An example of a string declaration for the VT

- 32 terminal is:

UP(RSR : constant string := (ASCII.ESC.'A'):

This .trin, would cause the cursor to be moved up one line.

A complete implementation of the package body could not be inade for

the VT - 52 because the VT - 52 does i.,,t provide all of the control fu nctiO)n

34

-p.-j

provided by the ANSI standard terminal. A partial implementation with only the

coillnon functions of the terminals is possible for use on the VT - 52.

.. 3. Other Terminal Types

The TERM 10 can be adapted to other serial CRT terminal types by

1ubtitutiing the correct control codes for the new terminal type. If the terminal

type ues a inethod other than control sequences to control screen functions. then

4 revision of the individual procedures of the TERM IO package body will be

require(d. Thi-. revision is likely to result in a very hardware specific package body.

It bhould rill result in a package body that completely implements the TERM 10

piac ka-,c -pec ific at ion.

.

-. 535

,'S.

4

5e4 ,%

p.x.

r-'
.4

4..,. , .,..,.._ . 2 ".",l , ,2€., .-.- e.e "2.''' ,. .. J '' .'e
- . ' ' . ' ' r -'". ',' .- '''= .'-,, . " € .

VII. CONCLUSIONS

As use of the Ada language becomes more common and more programmers

are trained in its use there will be more efforts to utilize the portability and code

reusabilitv features of Ada. The TERM 10 package is one example of the use of

these capabilities. The use of the Ada language to allow programmers to write

programs that can be reused in a variety of different situations is a major strength

of Ada and should be exploited whenever possible.

A. REVIEW

The need for an Ada package to provide programmers with procedures to

control the serial CRT terminal was indicated by the problems experienced with

the standard Ada package TEXT IO. The package TERMIO was developed to

meet this need. The goals sought in the design of the TERM 10 package were

rensability. portability, and ease of application. These goals were met through

the use of the constructs of the Ada language that allowed the terminal specific

items of the program to be hidden from programmer's using the package.

This thesis has proposed a package specification for an Ada terminal interface

package that is reusable and portable. An implementation of the features of the

S t,package and the method for implementing the package on other terminal types

36

'.
-0.

has been presented. This package can be used by other programmers to design

- better user interfaces faster and easier.

, The package TERM I was written to be used in the same manner as the

standard package TEXT IO and can be thought of in the same way by the

programmer. The TERM I0 package provided the programmer with cursor

*control capability to format screen output. with parameter control procedures to

change the characteristics of the output text. with input procedures to poll the

user for input, and with simple character graphics capabilities to improve the

appearance of the screen output.

B. RECOMMENDATIONS

The package TERM_10 should be provided to programmers learning Ada. It

can serve as a useful tool for program development and as an example of a

reusable package. Many of the problems experienced by the programmer who is

new to Ada but has experience in other languages result from the inadequacies of

the TEXT 1O package. A programmer who feels that he is always 'reinventing

) the wheel' to do screen output might well find a use for TERM 10.

The TERM IO package was designed for use with the serial CRT terminal.

As Ada applications become available for bit mapped graphics terminals, there

%- will be a need for a terminal interface package that provides a complete set of

-, graphics functions for the Ada language. This area Should be considered for

further thesis research.

37

• ,.. :.-':..,.. 2..-..7... -.- -.. ,,-,.-: .- , ,- -,:-...-:-..v -...--. ,,............--.'.-.-........,..........-..........-....-';

This theses was undertaken with the sponsorship of the NWC Missile

Software Group as part of a continuing program. The TERM 10 package has

been applied to improve the interface capabilities of other past and present thesis

efforts and it will be available for future efforts.

Work on this and other theses in Ada for NWC has been made difficult by

the lack of an Ada compiler for the Computer Science Department computer at

the Naval Postgraduate School. Currently the school's only capability in Ada is

the Janus/Ada partial implementation in use on microcomputers at the school.

Working in the full Ada language required the use of the Telnet or Arpanet

y~teml to work on the China Lake computer system. under a Missile Software

Group account. With the increased use of the Ada language for both thesis

research and class projects at the Naval Postgraduate School, the acquisition of an

Ada compiler should be considered.
,

The user interface is an important part of the overall programming effort.
m.4

Efforts such as TERM 10 make the writing of the user interface faster and easier

for the programmer. The hope is that the programmer will make use of the

TERM 10 package to produce a well designed and easy to use interface.

38

-4:

SI.

-. 5

.hf% ,• % ._ w* * * "

APPENDIX A

TERM 10 PACKAGE DECLARATION

-- TITLE: ADA TERMINAL INTERFACE

" -- MODULE NAME: TERM 10 DECLARATIONS

--)ate created: 04 MAR 87
-- Last modified: 15 MAY 87

-- AUTHOR: LT Anthony J. Keough

-- DECRIPTION: This package provides procedures to
-. -- improve the terminal interface. It should be

-- used with the package TEXT 10 to provide a
, -- full set of user interaction procedures.

71 , -

with TEXT 10:
use TEXT 10:

package TERM_10 is

-- To use TERM 10 the standard output must be set to
-- the terminal screen.

-- Variable types:

,x ,\\T 'IT('tTYPE is (ON.OFFj.

-" \ iriables

"I . ",\ I'It II ,\ ITt HT PE,

39

%@

• , • . " ,, . ". ° - . . - - % " • % ", - ,, ' , . .N 1.. • % % % ". • I S, - , .

-- Cursor control procedures:

procedure MOVE CURSOR _HOME:
-- Positions the cursor to the top left position.

procedure MOVE CURSOR _UP(NUM :in integer);

procedure MOVECURSORDN(NUM : in integer):

procedure MOVECURSORRT(NUM :in integer);

procedure MOVECURSOR _LT(NUM : in integer);

procedure SET CURSOR _POS(COLM,ROW : in integer);
-- Positions cursor to the screen position (COLM, ROW)
-- where (0.0) is the upper left corner.

procedure GET CURSOR POS(COLM,ROW : out integer);
-- Returns the screen position of the cursor where (0.0)
-- is the upper left corner.

-- Not implemented. stubbed to return (0.0).

--Screen and line clearing procedures:

procedure CLEAR SCREEN:

procedure CLEARLINE;

procedure CLEAR CURSOR TO EOL;

procedure CLEAR AND HOME:
C-- Clears the screen and positions the cursor to the

m-- bore position.

--Keyboard polling procedures:

function GET KEY return character;

function KEYPRESSED return boolean;

-- Controls for Reverse Video Printing:

procedure SET REVERSE(SW, ITCH : in SWITCItTYPE):

procedure (;U'F IEVERSE STATUS(SWITCH : (out SWITCtlTYPE):

40

% 40

-- Controls for Bold Face Printing:

procedure SETBOLD(SWITCH : in SWITCHTYPE):

procedure GETBOLDSTATUS(SWITCH : out SWITCHTYPE) -

-- Graphics character printing procedures:

-- These procedures print one graphics character
-- and leave the cursor on that character.
-- If graphics mode is set when the procedure is called
-- it will remain set. Otherwise graphics mode will
-- be set ON and OFF to print the graphics character.

procedure PUT TOPLTCORNER:

procedure PUT TOP RT CORNER:

procedurePUT BOT LT CORNER;

procedure BOT RT CORNER:

procedure PUT HORZBAR:

procedure PUT VERT BAR:

procedure PUT CROSS:

A procedure PUT TOP TEE:

procedure PUT BOTTEE:

procedure PUT LT TEE:

procedure P T _RTTEE;

-- Graphics Drawing Procedures:

procedure DRAW BOX(COLM,ROW : in integer):
-- Parameters passed are the upper left corner
-- of the box to be drawn centered on the screen.

procedure DRAW HORZ _LINE(LENGTH :in integer):

pr,,cedure DRAW VERT LINE(LENGTH : in integer),

41

01

1/% "d 4A

private

--These procedures are called by other procedures in TERM 1O.
-- They are not accessable to the programmer.

procedure KEYPOLLER(KEY : out character):
-- Implements the keyboard input method available on the
-- terminal-

--Graphics controlling procedures:

procedure SET GRAPHICS(SWITCH : in SWITCHTYPE):

procedure GET GRAPHICS STATUS(SWITCH: out SWITCHTYPE);

end TERM 10:

4.42

U.l.4

[, 42

-4.'

APPENDIX B

A PROGRAMMER'S GUIDE TO THE TERM I) PACKAGE

This Appendix presents a progranmler's guide to the use of the TERM 10

package. A programmer can use the TERM 10 package to control the screen

format of a serial CRT screen that uses character control codes. To use the

TERM 10 package. first ensure that the version of TERM I) that is used is

compatible with the terminal type in use. The control code- of variou, terminal

types may be different.

The programmer has available in the TERM 10 package a set of convenient

procedures that can be used to improve the screen output. These procedurc,

include cursor control procedures. screen and line clearing procedures. keyboard

polling procedures. printing status control procedures. and graphics procedures.

The complete declaration of the package specification is contained in Appendix A.

The programmer using the package should refer to the package declaration for the

format of the TERM 10 procedure calls and the typing of the variables.

To use the package TERM 10 it must be included with each package body

that calls a procedure in TERM IO. Tlii., 1 done by including the ,tateiilent-

,with TERM 10:
ISe TERM 10:

43

; ' ,l...

at the head of the package body that calls the procedures in TERM 10. After

this the procedures in TERM 10 can be called as if they were declared in the

package.

Cursor Control Procedures

The curor control procedure, can be tied to position the cursor to any

position on the (-rial (RT screen. The programmer can use this feature to format

The -creen to pre-icnt menues or to display result,. These procedure, are

procedure MOVE CURSOR HOME:
procedurte MOVE (I'RSOR I'P)NUNM in integoer):
procedure M(OVE ('RSOR DNNNIM in integer);
procedure' MOVE CURSOR RT(NUNI :in integer):
procedure MOVE CURSOR LT(NUM : in integer):
procedure SET CURSOR POS(COLNI.RO\V : in integer;

The procedure MOVE ('UVRSOR HOME moves the cursor to the upper left

,),,ition on the screen. The procedures MOVE ('URSOR UP to

NIOVE CURSOR LT allow the programmer to vary the amount of the cur-or

rniovement using the parameter NUM. This might be useful in applications such

a- (Irawing various size lines or positioning text based on the varying 1izc of a

figure The procedure SET CURSOR POS(COLM.ROW : in integer) ran be

11,,Cl to set the cursor position to any positiot On the termiinal !creei. A procedmrv

Call of SET CURS OR POS(0.0): i- the e(1uivhalent of the cl

NI(OVE ('I'R OR HOME. In the original inplementation the proce(lrf,

(,ET CUR (OR POS 1, not implemented. It always returns (0.01.

44

%%•*

d .

Screen anid Linie Clearing Procedures

The screen and line clearing poro('(dure- can b, u-ied to eras, all or part of

the terminal screen. Thi. i- especially in an interactive situation where the

prograuniier i changing only part of the display. These procedures are

procedure ('LEAR SCREEN:
procedure ('LEAR LINE:
procedure ('LEAR ('URSOR TO EOL:

As the proc(edure names indicate. CLEAR SCREEN erases the entire screen.

CLEAR LINE erases the entire line that the cursor is oi. and

CLEAR CUR.OR TO EOL erases the part of the current line to the right of the

cirger including the cursor postion. None of the screen and line clearing

procedures change the position of the cursor.

Keyboard Polling Procedures

The keyboard polling procedures can be used in interactive programming to

get input from the program user. This input can be in the form of a one character

answer such as a menu choice or hitting a key to signal that the user is ready to

move to the next step. The keyboard polling functions are

function GET KEY return character:
function KEYPREsSED return boolean:

The function GET KEY is used to get a specific character response from the user.

A call of

45

S

°~

ANS = ;ET KEY:
4

put- the user's answer in the variable ANS. One ap)lication of thi- feature is

IIIenuII selection. The function KEYPRESSED returns true if the a key on the

keyboard has been pressed. This call be ued to allow the user to signal that he is

ready to continue after reading instructions , for example. A simple waiting loop

-'ICh a.,

while true loop
I if KEYPREs ED then exit: end if:

oerni loop:

wit- for the u-.,r to hit a key on the keyb-oard.

Printitnig Status ('outrol Procedures

The procedure, for control of printing status allow the programmer to specify

bold face or reverse video printing. This can be used to emphasize the headings

(itplayed or the menu choices. These procedures are

-- (Controls for Revers.e Video Printing:

procelure SET REVERSE(SWITCH : in SWITCHTYPE):

procedure (;ET REVERSE STATU(SWITCH : out SWITCHTYPE):

C-- (ontrols for Bold Fare Printing:
procedure SET BOLD(SWITCH • in SWITCHTYPE):

procedure (ET BOLD STATU-"(SWITCH : out SWITCHTYPE):

Tio- er* icedur,, usc the variahl, .\' IT(H of type (ON.OFF) to set the bold

fac, o)r #.vcr~v %ideo) feature-. T,, proce('durc (;ET REVERSE STATT'S and

'4

(IET BO)LD -TATI ' allow th, pr0oar;aimimr To check th(.tatu. of th'.s

46

I

4
features in the program. A call of

SET BOLD(ON):

would set the output print on the terminal screen to boldface type until a call of

SET BOLD(OFF):

restored the print type to normal.

(;ralhics Character Printing Procedures

The graphics character printing procedures allow the programmer to design

,iniiple shapes and graphs in Ada for the serial CRT terminal screen. These

procedures are

procedure P VT TOP LT CORNER:
procedure PVT TOP RT CORNER:
procedure PUVT BOT LT CORNER:
procedure PUT BOT RT CORNER:
procedure PUT HORZ BAR:
procedure PUFT VERT BAR:
procedure P UT (ROSS:
procedure P VT TOP TEE:
procedure PIVT BOT TEE:

procedure PUT LT TEE:
procedure PUT RT TEE:

Thv,,-e procedures each print a ingle Craphic, character on the ,,creen at tlie

current c' r,-or location. A progra in 111r ran li,(' tlive procedures to make a ,lapc

I),v p(sitio11iig the i,'ur,tr and print iii each character at the d(esired ,crecni

I,,ation. The proceiure, leav(t I. current curor location at the location of the

-* 47

I'

graphics character. The programner iiiut rpo-ition thb cur.or before ach i Ii

character is printed.

(rapliics Drawing Procedures

Several basic drawing procedure- have ltwen provided in additIoli to thf

character printing procedure-. These procedure, are

procedure DRAW BOX((OLM.RO\' in integer);

procedure DRAW HORZ LINE(LEN(;TH in integer);
procedure' DRAW VERT LINE(LEN(GTH in integer),

The,-.' proced(ture- are ca-ier To 11,f , To (Iraw .implf. -hajw- tLan tl i c-i arac er

printing troceio."e- Thc t)r(w,',turv

DRA \\ BOXi(COLNt.ROW in integer);

Srai\- a))x c,'ntere-d m, the c..reen with the upper left corner of the box at

()L.\I.Ro)\ Th, procedures DRAW HORIZ LINE and

DRAW VERT LINE draw a line from the current cursor position of length

1. EN (T H

Privnt e Procedures

Tte private)roced ure- arf. ii)t acce.a ,hle to The programmer. These

prw,,Iure, aro, ied by th, other tr,c.1dri", in the TERM I() package.

48

.-.

*...........,-...............-.
*

| ~ ~ -

Saiiiple Me-nu Mlaker

Thii, procedure i , an cxamzple of the use of the TERN! 10 package. It hdowv,

:m;A programmxier iiiighTt is the funct ions~ of TERM N10 to write his ownI

,rinmal~ it rtace proced iire-.. It prod uce., a liinple inenu anid gets a mrenul

ifc* l(fi romi thle iiver.

A :jrw('~11re NAKE IEVNiTITLE. OPTi. OPT2. OPT3.
OPT4. OPT5 :In string(30)z-
A.! .~ out character).:

(fR-)RHOME:

I)IA\\ BOX57.31.

-ET I3OLDMIN.
.TIT-E.

-ET BOLDiOFF).

ELT (IR-()fl Po i 13.12):

plTOPT2.
Si '~-ET (1 IPR()R POSI,15.14):

put ("D.T

;)ll!I()PT4.
*-ET ('UPSOR POS(15.1S):

pu'E.
;ut I(() PT5k

-ET (ITR ()R Po-K(.23;.
* jtipuC 'Entcr 1Ictt(r of ('limc. A~ E:' I.

wVhile truE(1lOI)

:-N (,ET KEY:

4 9

J%.%

when 'A' "a'"B b'I 'C'J'c> "D'I "dVE"e ='e exit:
when others = null:

end case:
end loop:

end-

Thi-- procedure constructs a standard menu on the screen. It draws a border.

prints the menu title in boldface, presents five menu choices and waits for the user

to respond. The menu title and options can be strings lip to 30 characters long.

The procedure MAKE MENU shows how the programmer can use the TERM 10

package to format the screen output and control the movement of the cursor.

When called in a program the procedure MAKE MENU allows the programmer

to set up the menu and get the user choice with as little code as possible. The

result in the program is very clear and concise. A procedure call of

MAKE MENU("Projecl Title".
"Run Program".
"Show Listing".
"Set Options".

"Get More Information".
"Exit To System"
ANS):

is all that is required to print the menu. wait for the user choice. and return the

choice to the program.

"50)

".5.

3 .

APPENDIX C

TERM 10 PA(KAGE BODY

.............. * X

-- TITLE: ADA TERMINAL INTERFACE

-- MODULE NAME: TERM 10 BODY
-- DATE CREATED: 06 MAR 87
-- LAST MODIFIED: 15 MAY 87

-- .TIIOR: LT Anthon, J. Keough

-- DES('RIPTION: This package body implements the
-- TERM 10 package for the VT - 100 terminal
-- using the ANSI control code sequences.

.'

with TEXT 10:

usp TEXT 10:

package bodN TERM 10 is

-- Terminal parameters:

, S'REEN LENGTH constant : 76:

.' REEN HEIGHT :constant : 24:

A-- NSI (ntrol code sequences

(I.RSCR •onstant string : - (ASCII.ESC." ". ".'J'):
lIME : constant string (ASCII.ESC.' .'f').
()NRVRS constant string (ASCII.ESC.'"..':

[')F-F-RVRS : constant string : (AS(II.ES(.'Pin

II' RSR constant string \(ASCII.ES('.'. A):
I)N(HSH cons.tani string (A.SCII ES('.'''I)

I(Sr cstant string (ASCII.FSC .. '
I T(HS R .',nsant string AS(II.ES('..1)):

(1 'R E l()I, .,nstant string (.ASCII.ES(.' K')
(I.I.1,N.L ,-,nstant string (ASCII.S '. '.' '):
I)N(.k \I" r ,nstant sitring A

.55

OFFGRAF :constant string . (ASCIIESC.'('.H')
ONBOLD : constant string : (ASCII.ESC.',I,
OFFBOLD : constant string :-- (ASCII.ESC.' ','O'.'m'):

-- VT - 100 Terminal Graphics Characters:
-- These characters print as graphics characters
-- when the terminal is in the graphics mode.

1PIT('R constant character T:
IjPRTCR constant character = :
DNLTCR : constant character := m'
DNRTCR constant character: 'j'
HORZBR : constant character: "q'
VERTBR : constant character 'x':
(CRSS : constant character :-- n
V PTEE : constant character :- w
DNTEE constant character :v':
LTTEE constant character V:
RTTEL . constant character u

-- Tprminal Status \ ariables:

REVERSE STAT: SWITCHTYPE :y OFF:
BOL) STAT SWITCItTYPE OFF:
(;RAF STAT . S\ITCHTYPE OFF:

-- Other variables:

MM . inp t'er:

-- Cursor Control Procedures:

procedure MOVE CURSOR HOME is

-- Positions the cursor to the top left position.

begin
put(HME):

'nd:

procedure MOVE CU*RSOR UIT(NUM • in integer) is

for I in 1. VI M loop
pul('I'(CRSR):

ond loop:

52

9!,

A~*;' re -

~.~procedure MOVE CURSOR DN(NVM in integer) is

begin
for I in I ..N; loop

put(DNCRSR),
end loop:

end;

procedure MOVE CURSOR RT(NUM in integer) is

begin

for I in I..NUM loop

put(RTCRSR):
end loop:

end;

procedurp MOVE CRSOR LT(NUiM : in integer) is

begin
for I in I.NUM loop

put (LTCRSR):
end loop:

end:
~ 13d;

'.5' procedure MOVE CURSOR POS(COLM.ROW : in integer) is

begin
put(H\ME).
for I in I.COLM loop

, . put(RTCRSR):
-€lend loop:

for I in I.ROW loop

put(DNCRSR):
end loop:

53

Aq.-

04

%-

procedure GET CURSOR POS(COLM.ROW :out integer) is

-- This procedure is not implemented.
-- To use this procedure a hardware specific

call must be written for the procedure body.
-- The procedure only returns (0,0).

begin
COLM :)

ROV - O
end:

-- Screen and Line Clearing Procedures:

procedure CLEAR SCREEN is

begin
put(CLRSCR):

end:

procedure CLEAR LINE is

begin
put (CL R LNE):

end:

procedure CLEAR CURSOR TO EOL is

begin
put(CLREOL):

end:

-- Keyboard Input Procedures:

funtion GET KEY return character is

-- (>ets a single character input form the user.

KEY : character:

K f.KYI'Ol,,LLER (K FY):

54

return KEY;
end,

funct ion KEYPRF:SSED ret urn boolean is

-Returns true when the user has entered a key.

KEY :character:

* begin
KEYPOLLER(KEY):
return TRVE:

end:

/ procedure KEYPOLLER(KEY :out character) is

--This procedure can be modified to eliminate the
-- need for carriage returns by providing a
-system specific keyboard polling routine.

begin
get(KEY):

end KEYPOLLER;

-- Printing Status Control Procedures:

procedure SET RENVERSE(S WITCH :in SWITCHTYPE) is

begin
if SWITCH ON then

REV'ERSE STAT :- ON:
pUt(ONRVRS);

elsif SWITCH =OFF then
REVERSESTAT :- OFF:
put(OFFRVRS):

end if:
end,

* procedure GET REL\LWSE' STATi s(SWITCHI out SW~ITCHTYlPE) is

V.X1
%I~l

>\0 1 EE1Es U

end

4

procedure SET BOLD(SWITCH in SWITCHTYPE) is

begin
if SWITCH = ON then

BOLD STAT:= ON:
put(ONBOLD):

elsif SWITCH = OFF then
BOLD STAT:= OFF:
put (OFFBOLD);

end if:
end;

procedure GET BOLD STATUS(SWITCH out SWITCHTYPE) is

begin
SWITCH BOLD STAT:

end:

procedure SET (;RAPHI(S(SWITCH in SWITCHTYPE) is

-- Private Piocedure

begin
if SWITCH - ON then

GRAF STAT := ON:
put(ONGRAF):

elsif SWITCH = OFF then
GRAF STAT:= OFF:

put(OFFGRAF);
end if,

end;

procedure GET GRAPHICS STATUS(SWITCIH out S\\IT(tTYPE) is

-- re r Proced ur

begin

S\WIT('F (;RAF S T.A T.

"nd.

56

'I-

-- Graphics Printing Procedures

procedure PUT TOP LT CORNER is

begin
GET GRAPHICS STATUS(SWITCH);
if SW ITCH = ON then

put(UPLTCR):
MOVE CURSOR LT(I);

elsif SWITCH = OFF then
SET GRAPHICS(ON).
put(UPLTCR):
MOVE CURSORLT(l);
SET GRAPHICS(OFF):

end if:
end:

procedure PUT TOFP RT CORNER is

begin
GET GRAPHICS STATUS(SWITCII):
if S" ITCH - ON then

put(UPRTCR):
MOVE CURSOR LTjI):

elsif SWITCH = OFF then
SET GRAPHICS(ON):
put (UPRTCR):
MOVE CURSOR LT(I);
SET GRAPHICS(OFF):

end if:
end:

procedure PUT BOT LT CORNER is

begin
GET GRAPHICS STATUS(S%,\ITCil):
if SWITCH = ON then

Iput(DNLT(R):

MOVE CURSOR LT(I):
Ptsif SWITCH OFF then

SET (;RAPHI(S(ON)., patIi)\LT(CR)

%%OVE ('IRSO)R IT(I:
SET ;RA PHIIS()FF).

orlld.

r 57

p.

.4

procedure PUT BOT RT CORNER i

begin
GET GRAPHICS STATUS(SWITCH-):
if SWITCH = ON then

put (DNRT(R):
MOVE CURSOR LT(l):

elsif SWITCH sOFF then
SET GRAPIIICS(ON):
put) DNRTCR):
MOVE CURSOR LT(I):
SET GRAPHICS(OFF):

end if.

n d.

Drocedure PV T HORZ BAR is

hegin

(;ET (GR APHICIS STATVS(SWIT('1).
f SIT UI ON then

puit (I ()R ZBR:
MOVE (CURSOR LT))

elsif SWITCH - OFF then
SET GRAPHIC(ON).
put(HORZ BR):
MOVE CURSOR LT(I).
SE T (RAPffICSjOFV):

end

end.

prorp(iure P~IT VERT BAR

hegin

f - NITCH1 ON then
put (VERTBR).
MOVE (I RSOR LTWl)

elsif S N ITCH OFF' then
SET GR APHIUSION)
p ut) VER TIMB
MOVE (I H 4()R IT) I

SF

I4 I '-.-.-

procedure PI'T (ROSS is

hegin
GET GRAPHICS STATIS(S\WITCIt).
ifSITCH - ON then

put (CRSS);
MONE CURSOR LT(I);

eIifSWVITCH - OFF then
SET (;RAPHI('S((N).

put(CRSS);
MOVE CURSOR LT(I).
SET (;RAPHI('S((FF):

end if.
end.

procedure PVT TOP TEE is

begin
(GET GRAPHICS STATUS(SVITCH):
if -% ITCH O)N then

p ut I ('PT EE):
MOVE CRSOR LT(I1):

elsif S%%ITCH OFF then
SET GRAPIICS(ON):

.- put (VPTE E):
MONV.E ('IRSOR LT(1):
SET GRAPHICS(OFF):

end if
S'nd.

procedure PIT BOT TEE is

bevin
GET G;RAPHICS STATUS(SWITCH):
if SWITCH ON then

pu t (I)NTEE):
MOVE CURSOR LT(1):

e 1i1f S WI TCH OFF' then
SET GRAPIICS(ON):
p ut (D NTEE).
MOVE ('I RSO)R I.(1).
sET GRAPHICS(OFF).

otid if

I
•

'.,

59

too,

prwed.~ure Ni T LT TEE is

if %%ITCH ON then
put (LT'rFFE
MIOVE ('I RSOH L'I').

p eIkif sV%% ITCH'I OFF then

putiLI fEF
\1)\[-: (1 RSOR I) 1):

.'nd if

procedure PVT RI 'FEE is

hevin

(E'VA (.HAPI(S STAll S(S' IT(H).
if4% at ON then

\lWi E Ct RSOH [1(l().
*A'Iif % ITCH1 OFF then

-~~~~~ 0'F (T E F Iil (N

\liVF (I RSOH 1()

14~ FT

'IW t

.60

procedure D)RAW BOX(COL1\1.RO\\ :In Inte'ger) is

D.Iraws a box centered on the screen with the tipper
-- left corner of the bo\ at posit ion (('OLM, RO\

begin

CL E.AR S CR EEN;
SET GRAPHICS(ON):
M1OVE CVRSOR POS(COLM. ROWV):
put(VPLTCR);
for I in (NOLM..(SCREEN' LENGTH - ('OLM - 2) loop

put(IIORZBR):
end loop:
piit(UPRTCR);

p MOVE Ct'RSOR DN(I):
MOVE CURSOR LT(I):
for I in RO\N'.(SC'REEN* HEIGHT - ROW -2) loop

put (VERTBR):)()

.4. \MOVE (TRSOR LT(I).
% end loop:

1,u I (I)N R T(R).
%IO) F('CURSOR LT(2).

-for I In (OLM .(SC'REEN* LENGTH - (OLM -2) loop
put) HOR IBR).
MOVE\ ('IRSOR LT(2),

p ut () LN L T(CR):
\1)\ E CIURSOR UPi I
MO)\V (I RSOR LTI 1)
fr I in Ro%% (-4 REEN HEIGHT - HOW - 2) loop

put)VERTBR).
p... MOVl()E CURSOR I')

MOVE\ CU(RSOR LT) I).
en 1(op.

4S'T (;R.AP111ICS(0FF)

procedure I)RA\% IIO)R/ Li~ EGH in integer) i ,

beig in

for I in 2ljN(.rlmq,
put (IUR/IMR)

end lo)
SET ; RA AI'lJ 'Si OPT

end.

procedurolfi?.A\ VE XRT L1NF LENGTH in integer) is

Leg in
S ET (;R N PII I CS10N

* \10XL (I W)R LTI(u),
\1 \0\ F (I 11~ R P-01)(I)
for I in 2 1.FIK(;F -11 p

\1 ,\ F, HT RH Hiii,
\1()\ I. CI pHS f? L(1)

trid Io I

SET~~A (;H _i~lk I

i '1 1,R _

.%

APPENDIX D

ANSI STANDARD AND VT - 52 TERMINAL CONTROL CODE SEQUENCES

Function ANSI Terminal VT -52 Terminal

Cursor Up ESC [Pn A ESC A

Cursor Down ESC [Pn B ESC B

Cursor Right ESC [Pn C ESC C

Cursor Left ESC [Pn D ESC D

4. Home Cursor ESC r H ESC H

Position Cursor ESC [P1; Pc, H ESC P1, Pc

Reverse Video On ESC [7 m

Reverse Video Off ESC [0 m

Bold Face On ESC [1 m

Bold Face Off ESC 0 m

Graphics On ESC (0 ESC F

Graphics Off ESC (B ESC G

Clear Screen ESC [2 J

Clear Line ESC [2 K

Clear To End of Line ESC K ESC K

'a

4

%"%

APPENDIX E

MODIFICATIONS TO THE ADAMEASURE USER INTERFACE

Thec package, TERMI 10 wvas applied to the AdaMeasure prograrm TO rllus'tra

t ii , ()f The package anid the benefits of the package in the area., of readrbility

irid (,a-(- of use. The miodified section of the AdaMeasure package

MIEN U Dl1- PLAY' 1, pri-CenTed. followed by the original package. It should be

iipparrelr T hat uix~ig the TERN! I1) package made the obof Coding the user

1,i:VrWf ta-dir aid ea-.rer.

Modified Pmckage MENU DISPLAY

The TERM 10) package was used to modify the MENU DISPLAYN package.

Tho- MAKE MENU' procedure presented in Appendix B was used to modify the

procc~irc MENU. illustrating how a standard menul procedure call be employedl.

Tv prbcdurf' INITIAL MEN'T* was modified using the TERN! 10) frnctiO'is

hrt lv1 for a cutstomi dosign' in'terface.

V ER~I I \\ I~.'VI *) rVP V INITIAL. I)sL.ISIT IPAY SITI'OH'T
'I ~ MT uB~ xS HAL, I~ FIVT 1() TfIP\1 10,

-HA [("i1Ji '.10-

64

le

l ! .- A -- _ .p~l . , : I r .. r n - . t. - w . - . -, . ~ ,, -.

'." -*,,t MIENI I)I'!"L.\N

Sl ak:Age bud\ MENU I)ISPLAY is

-- r tis [r'-eliir, di,plav- the rietric selection rienu frorn which the user
-- , n rtIake ih.' alpropri ae select ion

rv, eur,' \ILM

\ARE MENI ("METRI(" SELECTION MEN!'".
"I.LSTEAD METRIC".

"()M\IMfT AND NESTING METRIC".
" INRY -NI) A KAURA METHI('".
"EXIT TO MAIN \IENI.

'EXIT T(Q IT 1F".

\
;,t\

-N-
,*' i-,'i \\ H l -I [

" ' r A , \ I t 1 .1 \- III

.,'r, I \ Il \\ 'I IF M-I

i.r I - 1)14I

"-'.~ 10 d' I r)I,(q IT Il-)

"'I r ,'. lr' rli .'. - 'I,. rt r, ~. r, t, r '-rr trr h l.', he. ,'-,'r
.- I . .- ' , [" sr , h , . ". |.r,. I ', \ i.-:. h'- r''.1 la ,, .f r I~ lr.i

* " Irr',' l\lFl \l M .II ,

%%

(I l F , -i It'll-\
S\I \f - I k- It" t' tI '\11.

-i " 1 ~ l!t'S R It' I 'i J 2 ,

"* - F I I'l 'I I lii J-

F- .o ,

'.. "t 1 l I I -,'I. II-.:'1 1 ..

-t I I'-' 'l': I', ,"- ,1

I,!;5

.. ~ .~put ("Exit to operat ine SN stem"

S ET (IR S 0R P OS (f 2 21
put"'Enter number 4 c hurt
A hiie true 1loop

A Ns (;FT KEN
-case A ;I

%hen A'i2' P\1(

LE H- I~ i W-)p ~T(H)L
Sen'd c ase.

'hII FI~TI ~ \I IP
.4. - I\l1 l -. R I

M\1
wh en 2 \lI
~hen 2 ra-". (,.)I I I I

r-p- 1\I1T1 \1 I V . V

.1 \ILN 1)1-11 \N

()rig-iiml Piiekm.g MENU DV~PLA V

III 'YO pak,.. nwo ii-,play Ili dlic uIt ie' that t he prog rammtters

..oi~ WV # I.t -creenr wutpuT are appiirciot The programmtier, were required to

toc Wf% bl~ (a Ii.act er for eachI creen Voacation. This leadS to t lie c lumbhv repeated

;II 114,% nci: calls, Evven hejf bf~ce loT\%eTi t lie line, tiavc to bie print ed InI

'.rto 11 4LE 1i~ir Thre astt'r:k yviiihol -wa! uised hi(put the(border around

t iii i fii lvc! Tllo ctict i itticrilT to \ritt and evcin hardier tir rviad.

. l -H \L 1, 11 - P. f I k \ I I \ 1 1

\lI~~1 1' ~

end MENI." DISPL\N

packame body MENT DIsl)l .Y is
.,

I. " -- thi, procedure displ s the rrrerc selection menu from which the user
-- Mra rake thc appr,pria e 'election

pr~cedlure NIENI i,
I)ONE bolean : F A LE:

1-,,gin

hil , not DONE],)lop

- np, line:
put '
PuTIO" new line:
I, lit "

,',t" ' ") n , lne w ine:

lut METRIC SELECTION MENT "):
,,): new line;

pill) new line:
"..lir(" HERE ARE THE INFORMATION CHOICES AVAILABLE"):
pill " TO N()! -"): ne\% line:

"lit .ne\, line
[it" Sirn[,l en Cr the number of your choice"):

i ... l ne, line:

Flut i" lie,. line:
[i~l"" I - HF.LSTEAD" METRIC INFORMATION ").

, ' , ('" . n+ e lile.

ne line.
2 - "OMMENT AND) \ESTIN; METRIC INFORMATION"),

"u r") e. line.

j 3 - l\R) an'i AFI IA"A METRI(INFORMATION
"T I " l l t 'A I 1i rir

FI I" " \, \1\~ \11.\S'- 110 tr'

' I It I' 0 1,tI IM'

ti. ' I t..

617

.4

" - ;' : '' ' - - -2- ;;)---)2- ; .) ? . ;.;.- . .-.. ,-'';'-> v-*** -.-- :7-;;-:-::,,.

put('): ne. Ilins,(2).

put("Choice-- "):
get(ANSWER):
get line(DUMMY FILE NAME. I.EN(;TH OF LINE):-- lush system input buffer
new line(2):
case ANSWER is

% hen "1' = HALSTEAI):
when '2' • VIE" GENERAL;
w hen '3 VIEW HENRY:
% .hen '4' - DONE: TRUE.
% hen 5 raise QUIT TO OS,
Swhen others null:

end case.
end loop:

end MENU:

-- this procedure displays the main selection menu w hich allows the user
-- , choose to parse - file. view previously gathered data. or quit to
-- tle operatjri !, retrn

pr,,cedur, INITI\I. MENI P,
DONE ,, oloean I A .SE .

begin

"~ [NTROD (T!O(N.
while n,,t I)()NE t,,op

("LEARS("REEVN
new line,
put ('' ' 'U

" '# ['lit(......) ne li e
i'.'-,Ile\ line(... .)

pliltl

pu '): new line;
put)'' MAIN SELETION MENU
put): new line.
put('.
put - -. ") new line:
-Ut) (" HERE ARE THE ACTION CHOICES AVAILABLE TO

. putr 'Y() 01)- new line.

put.''
put') new line;
'"[ut(''= Simply enter the number of Nour choice"):

'lrit)' linc..

u..t ... new line;
ilput)'' I - PARSE AN IN TI' FILE

"' , lit ... ") no\ line.
:: .ill' -A I,' hn,,.

[iilt'
1,ut ""' 2 - VIEW\ tREVIOI S-;.\ (' ATIItIR El) I7).-'T, ")

.lilt ('' '' rip%& line,

68

SI" r,

put(,. - EXIT TO OPERATIN; SYSTEM"
put) ..) new liue:
put(...)

put(" ") new line.

;put (

put -'): new line(2):

put ("(hoce ")

get(ANSWER):

A' get line()LM.Y FILE NAME. LENGTH OF LINE):-- flush system input buffer
new line(2):

case ANSW\ER is
when A' • RESET PARA\IETER .

INITIAL SCREEN:
MENI .

when '2' MEN':
when " raise QUIT TO OS,
when others - null.

end case.

Pfld INITIAL IEMNI
"l

"b

"

-%4

'I."

ql

,/'

,."

S.

69

4FSI

LIST OF REFERENCES

1. .Neider. J1. and Fairbaniks. K. .AdaMeasure: Ani Ada .Softuware Metric. M.S.

Thesis. Naval Postgraduate School. Monterey. California. March 1987.

2. S-TARS Joint Service Team. Preliminary -System Specification. Software

Technology for Adaptable Reliable Systems. Software Engineering

Environments. 30 Januar" 1986.

- 3. Roen. .. P.. On the Use of TEXT 10 on Interactive Terminals. Ada

Application, and Environment, Conference. IEEE. October 1984. pp. 76-80.

4. Barne. ,.G.P.. Programming in .4da. 2nd ed.. Addison-WesleyMenlo Park.

(alifornia. 1984.

5. ANSI I' IL-STD-1I15A. Military Stardard. Ada Programming Language.

22 ,Ianuary 19S3.

6. Borland Initernamional, Tnrbo Pascal Rfcrci \I, nual. Scotts Valley.
('aLit'(rmia. June '1("*<-.

Di-ita Equipiment ('orporat ion. IT- 100 se r Guid, lavriard.

.Ma-achiisett,. 1979.

Norton. Peter. Proyrarmc r'.q Guidt to the IBM P(. \ilcro~oft Pr(',.

B.iievue. 'Vashirngtori. 19S5.

9 AN-s Ttrmimid Irorfiirt .,tdindard. New York. 1975.

- ..

V:-'.-

., W*-' . *
L .2

,W-.7(

i9ol

I\I L I)ISII TiON LI~iN

1D~efense TFec h n Ica I I nforri at Ion ('ent Ir2
* (Cart itron SItat i10 [

.lexandria. VA 22304-61 15

2. L 1brar . Code 0 122
Na~ al Postgraduale Sc hool

\1onircre 93943-7)002

31. D epart ment Chai rmtan. C ode 5
Decpartmenf'It of (ornipulrr SclIrIf'f'

N a ,i] Post grad oat S~c hool
rC A . 93913--MOO)

I Prof. [)ame i . D av is. C ode 52N)

Dcoparr merit of C omlputer -"Clf'Ti('e

N Pw] ~'T grAdialf "choo]

e1)Trc\, (CA 9943-7ON

5.r t t'ier of N a\ iI \ riaI\ 1

D~r Halpti k% n(i,#

()tficev of Nd-t ai Ho''-oar hi

7 \lr. Hgtort. 22217-7)(100

(A IDR{. ('od(, 31 ,

N av%±] ck apon'- 'vwii r

'hiria Lake. ('A Ti,355

\It. ('adr HallI

'A t).arc B''iIf ranc"h

.171

Nix 7(), odt. 2')

M' \r .14wl I rirrbit

%R P ~H~Irigrari()ti

* 2 C ief .)l \oI .t ()I.; alm

Ji,,r if brf~rormator 't cup, C

I).pir' n ~ 72

'a.
a?

0

. .. S S S S S S S V U S S ~ *S.
U~*W**W%* #~W

4
W ~'' ~ ~; ~ ...-.-.... a - a..

-a *.

***a*-a ~.*v *-

a.' 0-pa.,. ~ ... ~a '

